Gene Therapy in Sickle Cell Disease

10 November 2018

Kevin Kuo, MD, MSc, FRCPC
Clinician-Investigator and Assistant Professor
Red Blood Cell Disorders Program, Therapeutic Apheresis Program
Division of Medical Oncology and Hematology, University Health Network
Division of Hematology, Department of Medicine, University of Toronto
Conflict of Interest Declaration

- Co-investigator: Cincinnati Children's Hospital Medical Center
- Co-investigator: CRISPR therapeutics
- Member of DSMB: Bioverativ/Sanofi
My Take on the Future of SCD Treatment

- Symptom Control
- Disease Control
- Side Effects
- Disease Modifier
- SCD Complications
- Personal Value and Preferences
- Prediction tool?
Tempering Hope with Reality

• 1 out of 8 participants
Typical Process of Gene Therapy for Sickle Cell Disease

- Erythrocytapheresis for > 2 months prior to mobilization
- Plerixafor mobilization
- Target 2 x 10^6 CD34+ cells/kg
- Busulfan or melphalan myeloablation
- Cyclophosphamide sparing since immunoablation is not necessary in an autologous setting
- ~10 weeks from mobilization to transplant
Advantages of Gene Therapy over HSCT

- Graft rejection
- GvHD
- Transplant-related complications
- Increased risk with age
- Increasing disease-related morbidity with age
- Infertility
- Therapy-related malignancies
- Donor availability
 - survival MRD > MUD > UD > Haplo
- Cost

Disease-related

Conditioning Regimen
Current Gene Therapy Trials in Sickle Cell Disease

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Approach</th>
<th>Age</th>
<th>Genotype</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cincinnati Children's Hospital Medical Center</td>
<td>γ-globin Lentivirus vector</td>
<td>18 – 35</td>
<td>S/β⁰, S/β⁺</td>
<td>Active</td>
</tr>
<tr>
<td>Boston Children's Hospital</td>
<td>shRNA targeting BCL11A Lentivirus vector</td>
<td>1: 18-35</td>
<td>SCD with HbF<10%</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: ≥12-<18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: ≥3-<12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bluebird Bio</td>
<td>β²⁰⁰-T₈⁷⁰ Q Lentivirus vector</td>
<td>12 – 50</td>
<td>S/S, S/β⁰, S/β⁺</td>
<td>Active</td>
</tr>
<tr>
<td>UCLA</td>
<td>βAS3-FB Lentivirus vector</td>
<td>≥18</td>
<td>S/S, S/β⁰</td>
<td>Active</td>
</tr>
<tr>
<td>CRISPR therapeutics</td>
<td>CRISPR</td>
<td></td>
<td></td>
<td>FDA IND</td>
</tr>
<tr>
<td>Bioverativ/Sagamo</td>
<td>ZFN BCL11A enhancer</td>
<td></td>
<td></td>
<td>FDA IND</td>
</tr>
</tbody>
</table>

Orkin SH and Bauer DE. Annu. Rev. Med. 2019. 70:23.1–23.15
clinicaltrials.gov, abstracted on 2018 Nov 10
SCD-Specific Indications in Current Gene Therapy Trials

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Inclusion</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cincinnati Children's Hospital Medical Center</td>
<td>Severe phenotype Failed HU</td>
<td>Abnormal PFT PHT Chronic transfusion</td>
</tr>
<tr>
<td>Boston Children's Hospital</td>
<td>Severe phenotype Failed HU Chronic transfusion for stroke prophylaxis</td>
<td>Has a MSD or MRD donor</td>
</tr>
<tr>
<td>Bluebird Bio</td>
<td>Severe phenotype Failed HU</td>
<td>Stroke, abnormal TCD, Moyamoya, Steno-occlusive disease</td>
</tr>
<tr>
<td>UCLA</td>
<td>Severe phenotype Failed HU (but off HU 90 days before enrollment) Stroke Chronic transfusion TRJV > 2.5 m/s Osteonecrosis</td>
<td>Has a MSD or MRD donor</td>
</tr>
<tr>
<td>CRISPR therapeutics</td>
<td>Pending</td>
<td>Pending</td>
</tr>
</tbody>
</table>
“Severe” Sickle Cell Disease Phenotype

• Definition varies

• Usually mirrors or similar to SCD bone marrow transplant trials

• Example (Boston Children’s):
 • ≥2 ACS in the past 2 years
 • ≥3 hospitalized pain crises in the past 2 years
 • > 2 priapism in the past 2 years
 • >2 RBC antibodies from transfusion
 • On chronic transfusions for stroke prophylaxis
Various Approaches to Gene Therapy in Sickle Cell Disease

Hoban MD, Orkin SH, Bauer DE. Blood. 2016; 127(7):839-848
Lentiviral Modified Globin Vector

- The modified lentiviral vector is replication defective, self-inactivating (reduces insertional oncogenesis)
- β^{A-T87Q}-globin (mutation derives from γ-globin)
- LCR required for high level erythroid-specific expression
- Insulator protects trans-gene from being silenced
- Interrupts polymerization of β^S

Hoban MD, Orkin SH, Bauer DE. Blood. 2016; 127(7):839-848
O2 Dissociation Curve of β^{A-T87Q}

HGB-204/5/6 Study Schema

Mobilization

- Apheresis
 - GCSF + plerixafor

Pre-infusion Conditioning

- Busulfan myeloablation

Infuse Cells after BB305 transduction

Subject Treatment

- BM harvest in HGB-206 (severe SCD) study

Centralized Manufacturing

- Select CD34+ cells
- Transduce with BB305 lentiviral vector
- Cryopreserve, test and release

2 years follow-up

Extension study
Up to 15 years total follow-up

HGB-206 (Severe SCD)

- Patient characteristics:
 - 8 Recurrent VOC
 - 7 ACS
 - 1 overt stroke
 - 3 TRJV > 2.5 m/s
- 1 SAE pain from bone marrow harvest
- 3 SAEs post-infusion: 1 bacteremia, 2 VOC
- 9 other AEs: fever, mouth pain, mucositis, febrile neutropenia, anorexia, fatigue, dyspnea, bacteremia

Kanter J ASH 2015 Abstract 3233
Result of one participant from HGB-205/6 Study

- Neutrophil engraftment at Day 38
- Discharged on Day 50
- Grade 3 infection with *Staphylococcus epidermidis* (with positive results on blood culture)
- No dominant clone
HbF Induction by Genome Editing

Genome Editing Delivery Methods

Electroporation
- Electric pulse applied
- Pores created in membrane
- Cell transfected with DNA or protein

Mechanical deformation
- Cell passed through constriction with dimension smaller than cell diameter
- Cell deforms, creates transient pores in membrane
- Pores close, cell transfected with DNA or protein
Comparison of Gene Editing Methods

<table>
<thead>
<tr>
<th></th>
<th>ZFN</th>
<th>CRISPR</th>
<th>TALEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>Can tolerate small number of positional mismatches</td>
<td>Positional and Multiple consecutive mismatches tolerated</td>
<td></td>
</tr>
<tr>
<td>Target constraints</td>
<td>Difficult to target non-G-rich sequences</td>
<td>5’ targeted base must be a T</td>
<td>Targeted sequence must precede a PAM</td>
</tr>
<tr>
<td>Ease of engineering</td>
<td>Difficult</td>
<td>Moderate</td>
<td>Easy</td>
</tr>
<tr>
<td>Ease of ex vivo delivery</td>
<td>Easy: viral transduction or electroporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ease of in vivo delivery</td>
<td>Easy</td>
<td>Difficult</td>
<td>Moderate</td>
</tr>
<tr>
<td>Immunogenicity</td>
<td>? Low</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
Potential and Theoretical Risks

• Engraftment failure
• Immunogenicity
 • CRISPR, TALEN and FokI in ZFN are derived from bacteria
• Semi-random integration
• Off-target effects
• Unrepaired double strand breaks
• Insertional mutagenesis
• Clonal dominance
• Cellular transformation

Ways to Mitigate the Risks

• FDA-mandated 15 year follow-up
• Secondary malignancy surveillance
• Off-target editing surveillance (peripheral blood and bone marrow)
• Vector copy number analysis
Systematic review of 47 cases of gene therapy in hemoglobinopathy

- Abstract 2194, Fazeel HF, et al.
- N = 47 patients, 35 patients (74.4%) TDT, 12 patients (25.5%) SCD
- Follow-up 2 to 36 months
- Lentivirus BB305 HbAT87Q in 81% patients (n=38)
- Conditioning regimen:
 - Myeloablative conditioning: busulfan 81% cases (n=38), Treosulfan + thiotepa in 7 cases
 - Non-myeloablative conditioning with busulfan was used in 2 cases (both TDT)
 - Bone marrow harvest was the source of HSCs in all SCD cases
- Range of vector copy number was 0.3-1.5 copies per diploid genome
- Hemoglobin reported for 62% cases (n=29) was > 88 g/l
- No transfusion free state was noted in SCD cases
- 75% SCD cases (n=9) had a 30-100% reduction in the frequency of VOCs
- Toxicity mainly from conditioning, no therapy-related leukemia or new malignancy
ASH 2018 Update
Abstract 1021

• Gene Therapy for Sickle Cell Anemia Using a Modified Gamma Globin Lentivirus Vector and Reduced Intensity Conditioning Transplant Shows Promising Correction of the Disease Phenotype
• Malik P et al., Cincinnati Children's Hospital Medical Center, Cincinnati, OH
• Reduced Intensity Conditioning (RIC)
• Phase I/II Pilot
• modified γ-Globin LV (NCT02186418),
• 2 SCA patients (35yo and 25yo) with S/β0
• Time to ANC ≥ 0.5 - day 9 and 7 post-transplant (PT)
• Time to platelet > 50 - day 14 PT in both
• HbF*/(HbF*+HbS) = 20% and 21% in P1 and P2 at day 180 PT
• VCN 0.2-0.4
• Integration site analysis demonstrated highly polyclonal pattern of integration
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>LG-001</th>
<th>HGB 204</th>
<th>HGB 205</th>
<th>HGB 206</th>
<th>HGB 207</th>
<th>TIGET BTHAL</th>
<th>TNS 9.3.55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study reporting</td>
<td>Cavazzana, M.</td>
<td>Kwałkowksi, J</td>
<td>Cavazzana, M.</td>
<td>Kante, J.</td>
<td>Waters, M.</td>
<td>Markel, S.</td>
<td>Bouhad, F.</td>
</tr>
<tr>
<td>Total Patients (n)</td>
<td>1</td>
<td>18</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Thalassemia (n, genotype)</td>
<td>β0/β0</td>
<td>β0/β0</td>
<td>β0/β0</td>
<td>non-β0/β0</td>
<td>non-β0/β0</td>
<td>non-β0/β0</td>
<td>2, non-β0/β0</td>
</tr>
<tr>
<td>Sickle cell Anemia (n, genotype)</td>
<td>N/A</td>
<td>N/A</td>
<td>3, βS/βS</td>
<td>9, βS/βS</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Age range (years)</td>
<td>18</td>
<td>12- 35</td>
<td>13- 21</td>
<td>18- 42</td>
<td>20-22</td>
<td>6-13 (n= 4); 31-35 (n= 3)</td>
<td>N/A</td>
</tr>
<tr>
<td>Median Follow up (range, month)</td>
<td>19</td>
<td>25.5 (15- 38)</td>
<td>23.4 (14.4- 42.2)</td>
<td>18.3 (14.9- 23.8)</td>
<td>3 (2- 6)</td>
<td>13 (6- 22)</td>
<td>(18- 23)</td>
</tr>
<tr>
<td>Conditioning regimen</td>
<td>MA; busulfan</td>
<td>MA; busulfan</td>
<td>MA; busulfan</td>
<td>MA; busulfan</td>
<td>MA; busulfan</td>
<td>MA; treosulfan+ thiopeta</td>
<td>NMA; Busulfan (total 8 mg/kg)</td>
</tr>
<tr>
<td>Stem cell harvest</td>
<td>BMH</td>
<td>PBSC; G-CSF+pleraixafer</td>
<td>SCDS= BM; TDT= PBSC</td>
<td>BMH</td>
<td>PBSC; G-CSF+plerixafer</td>
<td>PBSC; leugemastim+ plerixafer</td>
<td>PBSC; filgrastim</td>
</tr>
<tr>
<td>DP-VCN, median (range)</td>
<td>0.6</td>
<td>0.7 (0.3- 1.5)</td>
<td>TDT= (0.8- 1.5); SCDS= (0.5- 1.2)</td>
<td>(0.3- 3)</td>
<td>3 (2.4- 4)</td>
<td>(0.7- 1.5)</td>
<td>(0.21-0.39)</td>
</tr>
<tr>
<td>Dose infused (10^6 cells/kg)</td>
<td>3.9</td>
<td>8.1 (5.2-18.1)</td>
<td>TDT= 8.8- 12; SCDS= 3- 5.6</td>
<td>1.6- 5.1</td>
<td>N/A</td>
<td>16- 19.5</td>
<td>8.4- 11.8</td>
</tr>
<tr>
<td>Immediate safety concerns i.e. infusion reactions</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Disease specific outcomes

Total Hb (g/dl)	9-10	9.3- 13	TDT= 8.3- 13; SCDS= 8.8- 12.4	N/A	3.4-13.3	N/A	
Tx free period: no. of pts (n, months)	24 mo	β0/β0: n=2, l2 mo; non-β0/β0: n=8, 27 mo	TDT= 23-42 mo; SCDS= none	N/A	n= 1.5 mo	n= 3	
Tx Independence	yes	yes; non-β0/β0: (n=6)	N/A	N/A	No	No	
Tx reduction (percentage range of reduction)	100%	30-90%	N/A	N/A	N/A	N/A	
Vaso-occlusive crises	N/A	N/A	N/A	14-100% reduction	N/A	N/A	
HbAT87Q level (g/dl)	3.7	N/A	TDT= 6.6-10; SCDS= 1.5- 6.1	0.4-2.4	0.3- 8.4	N/A	
VCN in recipient blood (copies/diploid genome)	2.9% positive erythroblasts	β0/β0= 0.6- 0.9, non-β0/β0= 0.1- 1	TDT= 0.9- 2.1; SCDS= 0.3- 2.3	0.1- 2.6	2.2- 11.2	0.37-1.35	5-7% blood cells
Toxicity profile	N/A	MA related, no ≥ grade 3 Drug related AEs	MA related, no ≥ grade 3 Drug related AEs	MA related, no ≥ grade 3 Drug related AEs	MA related, no ≥ grade 3 Drug related AEs	MA related, no ≥ grade 3 Drug related AEs	N/A
Clonal dominance	Yes (JMGA2 genotype)	No	No	No	N/A	No	N/A
Post-Rx leukemia	No						
RCL	No						

Table-1: Summary of outcomes of the gene therapy trials

Abbreviations: AEs= adverse effects, BMH= Bone marrow harvest, DP-VCN= Drug product vector copy number, G-CSF= Granulocyte-colony stimulating factor, g/dl= grams per deciliter, MA= myeloablation, mo= months, N= number of patients, N/A= not applicable, NMA= non myeloablation, PBSC= peripheral blood stem cells, Rx= treatment, RCL= Replication competent lentivirus, SCDS= Sickle cell disorder, TDT= transfusion dependent thalassemia, Tx= Transfusion, VCN= Vector copy number,
Abstract 1026

- Current Results of Lentiglobin Gene Therapy in Patients with Severe Sickle Cell Disease Treated Under a Refined Protocol in the Phase 1 Hgb-206 Study
- John F. Tisdale, et al. (BlueBirdBio)
- BB305 lentiviral vector HbAT87Q
- Cell dose 7.1 (3 – 8) x 106 CD34+ cells/kg, VCN 4.0 (2.8 – 5.6) copies/diploid genome, 81 (78 – 88) % transduced cells.
- Neutrophil engraftment at a median of 19 (18 – 20) days
- Platelet engraftment was achieved at a median of 28 (12 – 64) days in 4 patients; pending in 2 patients.
- Grade ≥3 AEs
 - 2/11 patients - 4 events associated plerixafor mobilization/HSC collection: vaso-occlusive pain, hypomagnesaemia, vaso-occlusive pain, non-cardiac chest pain
 - Febrile neutropenia (n=5), stomatitis (n=4)
- Serious AEs in 3 patients: splenic hematoma, non-cardiac chest pain and mucosal inflammation.
- No graft failure, vector-mediated replication competent lentivirus, or clonal dominance
- 3 patients @ 3 months: Hb 11.7, 9.8, 9.2 g/dL, HbAAT87Q 4.7 g/dL, 3.2 g/dL and 3.5 g/dL
- 1 patient @ 6 months: off transfusions, Hb 14.2 g/dL, 62% (8.8 g/dL) HbAAT87Q, 36% (5.1 g/dL) HbS.
Abstract 1023

• Flipping the Switch: Initial Results of Genetic Targeting of the Fetal to Adult Globin Switch in Sickle Cell Patients
• Erica B. Esrick, et al.
• shRNAs (shRNAmiR) lentiviral vector (LVV) targeting BCL11A
• N = 3
• No Grade 3 or 4 AEs were attributed to mobilization and collection
• Cell doses 3.3 - 6.7 x 10^6 CD34+ cells/kg
• VCN 3.3 – 5.1 copies per cell
• >95% vector-positive CD34+-derived colonies.
• Neutrophil engraftment 22 days.
• 23.3% HbF, 51.8% HbS and 22.3% HbA
• HbF/(HbF+HbS) ratio of 29.7%.
• Adverse events observed from the start of conditioning until latest follow-up were consistent with myeloablative conditioning
• No product-related adverse events and no SCD-related complications.
<table>
<thead>
<tr>
<th></th>
<th>Hb A1</th>
<th>Hb F</th>
<th>HbS</th>
<th>%F / (%F+HbS)</th>
<th>Hb (g/dL)</th>
<th>HbF+ cells</th>
<th>Retic</th>
<th>LDH (U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline(^1)</td>
<td>60.2%</td>
<td>0.3%</td>
<td>36.5%</td>
<td>0.8%</td>
<td>10.4</td>
<td>0.3%</td>
<td>11.5%, 4.5%</td>
<td>538*, 167</td>
</tr>
<tr>
<td>Day +31</td>
<td>74.3%</td>
<td>7.5%</td>
<td>15.6%</td>
<td>32%</td>
<td>10.9</td>
<td>15.4%</td>
<td>6.3%</td>
<td>229</td>
</tr>
<tr>
<td>Day +41</td>
<td>60.2%</td>
<td>14.0%</td>
<td>23.3%</td>
<td>38%</td>
<td>11.3</td>
<td>ND</td>
<td>4.7%</td>
<td>251</td>
</tr>
<tr>
<td>Day +62</td>
<td>39.5%</td>
<td>20.1%</td>
<td>38.0%</td>
<td>35%</td>
<td>10.8</td>
<td>47.6%</td>
<td>3.5%</td>
<td>237</td>
</tr>
<tr>
<td>Day +76(^2)</td>
<td>22.3%</td>
<td>23.3%</td>
<td>51.8%</td>
<td>30%</td>
<td>10.9</td>
<td>59.7%</td>
<td>3.8%</td>
<td>187</td>
</tr>
</tbody>
</table>

\(^1\)Prior to a routine monthly exchange transfusion
\(^2\)64 days after last pRBC transfusion
*Values from 2010, prior to patient’s first exchange transfusion
Abstract 2190

• Ex Vivo Gene-Edited Cell Therapy for Sickle Cell Disease: Disruption of the BCL11A Erythroid Enhancer with Zinc Finger Nucleases Increases Fetal Hemoglobin in Plerixafor Mobilized Human CD34+ Cells

• Moran K, et al. (Bioverativ/Sanofi and Sangamo)

• BIVV003 (ZFN targeting the GATA motif within an intronic erythroid-specific enhancer (ESE) of BCL11A)

• Healthy donors, plerixafor mobilization

• On target effect: >75% of alleles modified, measured by MiSeq deep sequencing

• 77% post-editing viability

• in vitro HbF protein levels and HbF+ cell frequencies within erythroid progeny of edited cells were increased by >4 and 3-fold

• Both alleles of BCL11A were targeted at 91-94% of edited cells within erythroid progeny

• High levels of replicable GATA-disrupting indel patterns

• Each edited allele contributed on average an additional 17.6% increase in HbF production in vitro

• Increase in HbF level for biallelic edited vs. unedited controls (3.4 fold)

• Injection of BIVV003 into immune-deficient NBSGW mice resulted in 21 weeks long-term engraftment
Abstract 1080

- Outcomes for Initial Patient Cohorts with up to 33 Months of Follow-up in the Hgb-206 Phase 1 Trial
- Kanter J, et al. (BlueBirdBio)

The first 7 patients (Group A) received DP from bone marrow harvested (BMH) HSCs and demonstrated stable but sub-optimal gene therapy-derived hemoglobin (HbA^{T87Q}).

Protocol was amended to include pre-harvest transfusions, increased target busulfan levels and a refined DP manufacturing process (Group B).

Group C treated under modified protocol and including DP manufactured from plerixafor-mobilized HSCs.

Group B had higher VCNs, cell doses and % transduced cells compared to Group A.

Toxicity profile was consistent with myeloablative conditioning.

Serious AEs were reported in 8 patients; vaso-occlusive pain (n=5) was most common.

No grade ≥3 DP-related Aes, no evidence of graft failure, veno-occlusive liver disease, replication competent lentivirus or clonal dominance.

Table 1. DP Characteristics, Total and Gene Therapy-Derived Hb, and Hemolysis Markers

<table>
<thead>
<tr>
<th></th>
<th>Cell Dose 10^6 CD34+ cells/kg</th>
<th>DP VCN (copies/diplided genome)</th>
<th>Transduced Cells (%)</th>
<th>PB VCN (copies/diplided genome)</th>
<th>Total Hb (g/dL)</th>
<th>HbA^{T87Q} (g/dL)</th>
<th>% Change from Baseline*</th>
<th>LDH</th>
<th>Total Bilirubin</th>
<th>Absolute Neutrophil Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A Median (min - max)</td>
<td>2.1 (1.6 - 3.1)</td>
<td>0.6 (0.3 - 1.1)</td>
<td>25 (8 - 42)</td>
<td>0.1 (0.1 - 0.8)</td>
<td>8.9 (7.1 - 11.4)</td>
<td>0.8 (0.5 - 1.3)</td>
<td>-24 (-49 - -61)</td>
<td>-46 (-67 - -67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group B Patient 1313</td>
<td>2.2</td>
<td>1.4/3.3*</td>
<td>46/83*</td>
<td>0.6</td>
<td>11.0</td>
<td>3.2</td>
<td>-55</td>
<td>-64</td>
<td>-58</td>
<td></td>
</tr>
<tr>
<td>Group B Patient 1317</td>
<td>3.2</td>
<td>2.9/5.0*</td>
<td>90/95*</td>
<td>2.5</td>
<td>12.8</td>
<td>7.2</td>
<td>-29</td>
<td>-25</td>
<td>-69</td>
<td></td>
</tr>
</tbody>
</table>

*2 DP los per patient

*1 patient, still receiving chronic transfusions, is excluded
*negative (-) indicates decrease and positive (+) indicates increase

Figure 1. Change in Annualized VOEs at Last Visit Post-Treatment vs 2 Years Pre-Treatment

VOEs (vaso-occlusive events) include VOEs (vaso-occlusive crisis) or ACS (acute chest syndrome), with VOE described as pain episode lasting ≥2 hours and requiring care at medical facility; and ACS defined as an acute event with pneumonia-like symptoms and the presence of a new pulmonary infiltrate; Patient 1309 was excluded from this analysis since he was on pre-treatment RBC transfusions and has not experienced any VOEs post-Len/Nil/leno DP treatment.
Future Directions in Sickle Cell Gene Therapy

• Safe and efficient gene transfer
• Correction of long-term repopulating HSCs
• High-level and stable gene expression
• Gene modification is appropriately regulated
• Current insertion/editing is still semi-random (hitting innocent bystanders)
• Reduction of the risk of insertional mutagenesis, clonal dominance and cellular transformation
• Reduction of side-effects of myeloablation
Supplemental Slides
Plasmid for Transfer Vector pBB305

LentiGlobin BB305 provirus